Coupling of CFD and a Material model for the assessment of incubation time and erosion rate

Kavitationsworkshop Drübeck

01.12.2021

Felix Schreiner Magnus Haese Romuald Skoda

State of the art

- > CFD Erosion indicators: Exceeding of pressure p and condensation rate $\partial \alpha / \partial t$ threshold
- \succ Erosion probability P_{Er} by statistical evaluation
- > Assessment of erosion sensitive wall zones only, no material information

Workshop Kavitation, Drübeck | Felix Schreiner, Magnus Haese, Romuald Skoda | 01.12.2021

RUB

 \geq

Wall load model

For each wall cell face *i*

Workshop Kavitation, Drübeck | Felix Schreiner, Magnus Haese, Romuald Skoda | 01.12.2021

¹⁾ J.-P. Franc (2009), J. Fluids Eng., Vol. 131, 21303.

ASTM G32

- \succ f ~ 20kHz, A_{pp} ~ 40µm
- Gap width variation 0.3; 0.5; 1.0; 1.5mm

Material test ¹⁾

Gap width [mm]	0.3	0.5	1.0	1.5
Incubation time [min]	140	118	147	194
Erosion rate [mg/h]	11.3	13.0	9.8	6.7

Workshop Kavitation, Drübeck | Felix Schreiner, Magnus Haese, Romuald Skoda | 01.12.2021

¹⁾ Schreiner, Hanke, Skoda (2021), Wear 484-485, 203989

Measurement of surface topography¹⁾

Head Erosionstiefe [µm] 200 150 2 6 Radius [mm]

Stationary specimen

Measurement of surface topography¹⁾

Workshop Kavitation, Drübeck | Felix Schreiner, Magnus Haese, Romuald Skoda | 01.12.2021

¹⁾ Schreiner, Hanke, Skoda (2021), Wear 484-485, 203989

8000

Measurement of surface topography¹⁾

Workshop Kavitation, Drübeck | Felix Schreiner, Magnus Haese, Romuald Skoda | 01.12.2021

¹⁾ Schreiner, Hanke, Skoda (2021), Wear 484-485, 203989

CFD of Sonotrode

hydRUBFoam

- Compressible, time-explicit densitybased non-viscous (Euler) solver
- Shock wave resolution by Riemann solver¹
- Barotropic EOS
- Homogeneous mixture approach
- Harmonic and subharmonic dynamics of Sonotrode are well captured ²⁾ (see rhs)
- Erosion sensitive wall zone capturing ³⁾

¹⁾ Schmidt et al. (2008), 46th AIAA, paper 2008-1238

²⁾ Schreiner et al. (2019), Ultrasonics Sonochemistry 67, 105091

³⁾ Mottyll & Skoda (2016), Ultrasonics Sonochemistry 31, 570–589

Workshop Kavitation, Drübeck | Felix Schreiner, Magnus Haese, Romuald Skoda | 01.12.2021

Radial wall load profile on head for s = 1.5 mm

Radial wall load profile on head for s = 1.5 mm

Conclusions

- Valuable tool in terms of an extended post-processing
 - > Publication in *Wear* is under preparation
- > However: calibration necessary, case dependent
- Sonotrode simulation: CFD method has still limitations and is thus restricted to large gap width:
 - Thermal effects
 - ➢ Air content

Thank you for your attention! Thanks to our sponsor for funding.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages