

Simulating cavitation bubbles near elastic structures in OpenFOAM

HENDRIK REESE, CLAUS-DIETER OHL

Motivation

- single cavitation bubbles near elastic solid
- > quantify wall shear stress that causes damage/cleaning effect
- > shear wave propagation

Patricia Pfeiffer, Otto-von-Guericke-University Magdeburg, Germany

Fluid Structure Interaction

> short: FSI

interaction between movable or deformable structure and fluid flow

 \succ fluid acts on structure through pressure p and viscous stresses $\mu \nabla \circ \vec{u}$

 \succ structure acts on fluid through deformation D and velocity \dot{D}

Monolithic method:

 solve governing equations of the fluid and the solid simultaneously with a single solver Partitioned method:
solve flow equation and elasticity equation with two separate, coupled solvers

Fluid Structure Interaction

Governing equations - fluid

> compressible Navier-Stokes-equation:

$$\rho \frac{D\vec{u}}{Dt} = \rho \vec{f} - \nabla p + \mu (\Delta \vec{u} + \frac{1}{3} \nabla (\nabla \cdot \vec{u}))$$

> continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$
> equation of state (Tait equation):

$$p = (p_0 + B) \left(\frac{\rho}{\rho_0}\right)^{\gamma} - B$$
> stress tensor:

$$\vec{\sigma} = -p\vec{1} + \mu \left[\nabla \circ \vec{u} + (\nabla \circ \vec{u})^T\right]$$

Force on a surface: $\vec{F} dS = \overleftarrow{\sigma} \cdot \vec{n}$

	gas	liquid
p _o in Pa	10320	101325
$ ho_0$ in kg/m ³	0.12	998.2061
γ	1.33	7.15
B in Pa	0	4.046e8

Governing equations - solid

▶ equation of motion for Deformation \overrightarrow{D} (linear elasticity): $\frac{\partial^{2}(\rho\overrightarrow{D})}{\partial t^{2}} - \nabla \cdot \overrightarrow{\sigma} = 0$ > stress tensor: $\overrightarrow{\sigma} = 2 \ G \ \overrightarrow{\epsilon} + \lambda \ tr(\overrightarrow{\epsilon}) \ \overrightarrow{1}$ $\Rightarrow \frac{\partial^{2}(\rho\overrightarrow{D})}{\partial t^{2}} - \nabla \cdot \left[G \nabla \overrightarrow{D} + \underline{G}(\nabla \overrightarrow{D})^{T} + \lambda \ tr(\nabla \overrightarrow{D}) \ \overrightarrow{1} \right] = 0$ > strain tensor: $\overrightarrow{\epsilon} = \frac{1}{2} \left[\nabla \overrightarrow{D} + (\nabla \overrightarrow{D})^{T} \right]$

coupling between components

 \rightarrow iterative solution required

 \succ E - Young's/elasticity modulus, $\nu = 0.4$ - Poisson's ratio

 $\lambda = \frac{\nu}{1 - 2\nu} \frac{1}{1 + \nu} E, \quad G = \frac{1}{2} \frac{1}{1 + \nu} E$

> Lamé parameters:

Solver (Open∇FOAM®) - base solver

- OpenFOAM version: foam-extend-4.0
- base solver: fsiFoam
- "Finite volume fluid structure interaction solver based on partitioned approach and strong coupling.
 PIMPLE algorithm (Pressure-based Implicit Method for Pressure Linked Equations)"
- dynamic mesh in both the solid and fluid domains to handle solid deformation
- includes viscosity
- <u>does not include</u>: compressibility, multiphase flow

Solver (Open∇FOAM®) - new solver

> new solver: CavBubbleFsiFoam

> implemented features from compressibleInterFoam: phase fraction (α), density (ρ), compressibility (κ) and viscosity (μ) fields and surface tension coefficients (σ)

$$\kappa \stackrel{\text{Tait}}{=} -\frac{1}{V}\frac{\partial V}{\partial p} = \frac{1}{\gamma (p+B)}$$

- > adjusted forces onto solid accordingly
- \succ corrected ρ for the bubble mass to stay constant (no phase transitions), m =
- > corrected α fields to counteract numerical cavitation sets $\alpha_{gas} = 0$ if $\alpha_{gas} < 0.001$
- still not including: phase transitions, temperature equation

First results

Bubble in a thin gap

Bubble in a thin gap - wave propagation

11

Bubble in a thin gap - wave propagation

60 GPa (glass), comparison of experiment with selected frames

Pedro Quinto, Universidad Nacional Autónoma de México, Mexico Ulisses Jesús Gutiérrez Hérnandez, Universidad Nacional Autónoma de México, Mexico

Bubble at an elastic wall - bubble collapse

Bubble at an elastic wall - bubble collapse

Conclusion and Outlook

- > developed numerical solver for a single cavitation bubble and an elastic solid
- > shows good agreement with experiments
- Future work:
 - > optimization of the solver
 - > deeper understanding of cavitation erosion
 - > deeper understanding of secondary cavitation

DFG Funded by the DFG (Deutsche Forschungsgemeinschaft / german scientific community)

Credit/prior work

- > experiments by:
 - Patricia Pfeiffer, Otto-von-Guericke-University Magdeburg, Germany
 - > Pedro Quinto, Universidad Nacional Autónoma de México, Mexico
 - > Ulisses Jesús Gutiérrez Hérnandez , Universidad Nacional Autónoma de México, Mexico
- > work on single bubble simulations using OpenFOAM done by:
 - Max Koch, Georg-August-University of Göttingen, Germany
 - Christiane Lechner, , Georg-August-University of Göttingen, Germany
 - > Qingyun Zeng, Nanyang Technological University of Singapore

Literature

- J. B. Keller, M. Miksis: "Bubble oscillations of large amplitude", Stanford University, USA, Journal of the Acoustical Society of America, 1980
- W. Lauterborn: "Physics of bubble oscillations", Georg-August-Universität Göttingen, Germany, Reports on Progress in Physics, 2010
- F. Reuter, R. Mettin: "Mechanisms of single bubble cleaning", Georg-August-Universität Göttingen, Germany, Ultrasonics Sonochemistry, 2016
- M. Koch et al.: "Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM, Georg-August-Universität Göttingen, Germany, 2016
- F. Reuter et al.: "Membrane cleaning with ultrasonically driven bubbles", Georg-August-Universität Göttingen, Germany, Ultrasonics Sonochemistry, 2017
- M. Koch: "Laser cavitation bubbles at objects: Merging numerical and experimental methods", Dissertation, Georg-August-Universität Göttingen, Germany, 2020
- > Zeng et. al.: "Wall shear stress from jetting cavitation bubbles", 2018, Nanyang University, Singapore
- T. Tian: "Implementation of solid body stress analysis in OpenFOAM", 2013, Chalmers Universit, Gothenburg, Sweden, <u>https://backend.orbit.dtu.dk/ws/portalfiles/portal/53911239/prod11365072351121.OSCFD_Report_TianTang_peerReviewed.pdf</u>
- H. Luofeng et al.: "An opensource solver for wave-induced FSI problems", 2018, Chalmers University, Gothenburg, Sweden, <u>http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2017/LuofengHuang/2017_OSCFD_Report_Luofeng.pdf</u>

Y. Hua-Dong: "Simulation of fluid-structural interaction using OpenFOAM", 2014, Chalmers University, Gothenburg, Sweden http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2014/OFLecFSI-1.pdf

L. Minghao: "Implement interFoam as a fluid solver in FSI package for the course CFD with OpenSource Software", 2016, Chalmers University, Gothenburg, Sweden http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/MinghaoLi/Minghao_slides.pdf

Pictures

- [B1] "Ein- und Auslassventile mit Ultraschall reinigen im BANDELIN SONOREX Ultraschallreiniger", BANDELIN, YouTube, URL: https://www.youtube.com/watch?v=7pL1UOLEjnQ
- [B2] F. Reuter, R. Mettin: "Mechanisms of single bubble cleaning", Fig. 12, Georg-August-Universität Göttingen, Germany, Ultrasonics Sonochemistry, 2016
- [B5] OpenFOAM logo, https://www.openfoam.com/
- [B6] DFG logo, https://www.dfg.de/
- > [B7] Otto-von-Guericke-University logo, https://www.ovgu.de/

compressibleInterFoam time loop

- calculate Courant number, adjust time step size
- pressure-velocity PIMPLE corrector loop
 - Solve α equation (continuity equation for alpha field), $\frac{\partial(\alpha \rho)}{\partial t} + \nabla \cdot (\alpha \rho \vec{u}) = 0$
 - \succ update ρ (continuity equation)
 - > solve U equation (NSE without pressure term), pressure corrector loop
 - > solve pressure equation
 - update compressibility and p
 - correct bubble mass
- write fields and output data

Bubble initiation

- mimicks a laser/spark produced bubble
- $\succ \rho_{gas} = \rho_{liquid}$
- ightarrow p_g ≈ 170 kBar, p_l ≈ 1 Bar
- ➤ U = 0 m/s
- > solid: D = 0 m, σ = 0 Pa
- Smearing to counteract Rayleigh-Taylor-Instability

