Compressible multi-scale Euler-Lagrange simulations of cavitating flows

Andreas Peters, Udo Lantermann, Ould el Moctar

University of Duisburg-Essen –

Institute of Ship Technology, Ocean Engineering and Transport Systems (ISMT)

30. November 2021 Kavitationsworkshop Drübeck 2021

Numerical Results

Conclusions

References

< ∃ →

Funding and Motivation

- Joint-projects "KonKav III" and "KAV4D" funded by the German Federal Ministry for Economic Affairs and Energy (BMWi)
- Project funded by the German Research Foundation (DFG)

Motivation of present work:

- Development of hybrid multi-scale Euler-Lagrange methods to simulate cavitating flows including details of single bubble dynamics
- Prediction of cavitation erosion from Lagrangian single bubble collapses
- Using OpenFOAM (C) as CFD toolbox

Numerical Results

Conclusions

References

< ∃ →

Cavitation and Erosion

Cavitation erosion mechanisms

Collapsing cavitation bubbles near a solid wall cause erosion

⇒ How to deal with the different temporal and spatial scales involved in cavitation and cavitation erosion?

Andreas Peters, Udo Lantermann, Ould el Moctar

Eulerian and Lagrangian Methods

Euler-Euler – homogeneous mixture approach

- Liquid phase and vapour phase are both treated as continuum on Eulerian grid
- Behaviour of flow from mass and momentum conservation
- Volume of Fluid (VoF) method to capture interface between the phases
- Compressibility of liquid phase: additional derivatives in volume fraction and pressure equations; liquid density and speed of sound according to Tait equation of state
- Source terms from a cavitation model account for vaporisation and condensation processes
- Advantage: Computational efficiency
- Disadvantage: Details about behaviour of single bubbles missing

Euler-Lagrange

- Liquid phase treated as continuum; vapour phase consists of a discrete number of spherical bubbles; different levels of coupling (1-, 2-, 4-way)
- Motions of each single bubble are calculated using a Lagrangian equation of motion
- Bubble dynamics calculated for each bubble (Rayleigh-Plesset, Gilmore, Tomita-Shima)
- Advantage: Detailed information about spherical single bubbles
- Disadvantage: High computational resources needed

\Rightarrow combine the advantages of both methods

< ≣ →

Numerical Results

Conclusions

References

Multi-Scale Euler-Lagrange Approach

< ≣ >

Numerical Results

Conclusions

References

Basic Concept: Multi-Scale Euler-Lagrange

- Basic Concept Multi-Scale Euler-Lagrange Method, Peters and el Moctar (2020):
 - Liquid phase: treated as continuum in Eulerian frame
 - Large vapour volumes: treated as continua in Eulerian frame
 - Small vapour volumes: treated as spherical Lagrangian bubbles
- Erosion Prediction:
 - Based on collapses of Lagrangian bubbles near solid-surfaces

Multi-Scale Euler-Lagrange: Transformation

How to transform vapour volumes between Eulerian and Lagrangian frame?

- Transformations based on criteria: (vice versa for Lagrange to Euler)
 - $\circ~$ Absolute size of vapour volume: $\textit{V}_{\rm ref} < \textit{V}_{\rm limit}$ or
 - Relative size of vapour volume to numerical grid: n_{cells} < n_{limit}
- Transformation of vapour volume from Euler to Lagrange:

• Calculation of total vapour volume from both frameworks:

$$\alpha_{v,total} = \alpha_{v,Euler} + \alpha_{v,Lagrange}$$

< ∃ →

Multi-Scale Euler-Lagrange: Erosion Assessment

Erosion Model

- Aim: predict erosion using Lagrangian bubble collapses near solid wall
- Erosion potential depends on properties obtained from Lagrangian bubble collapses:
 - Maximum bubble radius prior to collapse R_{max} 0
 - Distance of bubble centre to surface H
 - Pressure at end of collapse p_{coll} 0
 - Number of bubble collapses affecting regarded face n_{coll}
- Lagrangian damage potential, c_{dam} , for every face of a surface:

$$c_{\text{dam}} = \frac{\sum_{t}^{T} \left(\frac{n_{\text{coll}} p_{\text{coll}} R_{\text{max}}}{H}\right)_{t}}{\sum_{n}^{N} \left(\sum_{t}^{T} \left(\frac{n_{\text{coll}} p_{\text{coll}} R_{\text{max}}}{H}\right)_{t}\right)_{n}}$$

 \Rightarrow Part of erosion compared to total erosion on surface (qualitative)

BURG

Multi-Scale Euler-Lagrange: Validation Case

- Validation of multi-scale Euler-Lagrange approach to predict cavitation erosion, Peters and el Moctar (2020)
- Benchmark based on experiments of Franc and Riondet (2006); Franc et al. (2011)

Numerical Results – Cavitating Flow over NACA 0015

< 注→

Multi-Scale Euler-Lagrange: NACA 0015 (1)

 Simulation of cavitating flow over NACA 0015 at AoA = 5°, U_{in} = 10 m/s, σ = 1.19 using multi-scale Euler-Lagrange method, Peters et al. (2020)

Andreas Peters, Udo Lantermann, Ould el Moctar

UNIVERSITÄT DUISBURG ESSEN

< ∃ →

Multi-Scale Euler-Lagrange: NACA 0015 (2)

- Transformations of Eulerian vapour volumes into Lagrangian bubbles (and vice versa)
- Collapse of Lagrangian bubbles in vicinity of surface •

Numerical Results

Conclusions

References

Multi-Scale Euler-Lagrange: NACA 0015 (3)

• Collapse of a Lagrangian bubble near the hydrofoil's surface

< 三→

Multi-Scale Euler-Lagrange: Bubble Collapse (4)

- Two Eulerian vapour structures are transformed into Lagrangian bubbles, which collapse consecutively
- Collapse of larger bubble radiates a noticable shock wave

Numerical Results

Conclusions

References

Multi-Scale Euler-Lagrange: NACA 0015 (4)

Information from bubble collapses is used to assess erosion potential

< ∃⇒

Conclusions and Outlook

Andreas Peters, Udo Lantermann, Ould el Moctar

Numerical Results

Conclusions

References

Conclusions and Outlook

Conclusions

- Multi-scale approach connects macroscopic with microscopic scales
- Lagrangian bubble collapse information can be used to predict erosion

Outlook

- Comparison with further experimental measurements
- Implementation of bubble break-up processes
- Considering three-phase carrier flow (including non-condensable gases)

		References

- J.-P. Franc and M. Riondet. Incubation Time and Cavitation Erosion Rate of Work-Hardening Materials. In Proceedings of the 6th International Symposium on Cavitation, CAV2006, Wageningen, Netherlands, 2006.
- J.-P. Franc, M. Riondet, A. Karimi, and G. Chahine. Impact Load Measurements in an Erosive Cavitating Flow. *Journal of Fluids Engineering*, 133(12), 2011.
- A. Peters. Numerical Modelling and Prediction of Cavitation Erosion Using Euler-Euler and Multi-Scale Euler-Lagrange Methods. PhD Thesis, University of Duisburg-Essen, Duisburg, Germany, 2020.
- A. Peters and O. el Moctar. Numerical assessment of cavitation-induced erosion using a multi-scale Euler-Lagrange method . Journal of Fluid Mechanics, 894, 2020.
- A. Peters, U. Lantermann, and O. el Moctar. Multi-Scale Euler-Lagrange Cavitation Modelling and Prediction of Cavitation Erosion. In Proceedings of the 33rd Symposium on Naval Hydrodynamics, SNH2020, Osaka, Japan, 2020.

Numerical Results

Conclusions

References

くヨン

Thank you!

Andreas Peters, Udo Lantermann, Ould el Moctar

UNIVERSITÄT DUISBURG ESSEN

Kavitationsworkshop Drübeck 2021