Investigation of surface damage caused by multiple laser-induced single bubble cavitation

Jonas Kühlmann1, Christina Lopez de Arcaute y Lozano 2, Stefanie Hanke2, Sebastian A. Kaiser1

1 Universität Duisburg-Essen, IVG - Reaktive Fluide, Carl-Benz-Str. 199, 47057 Duisburg, Germany
2 Universität Duisburg-Essen, ITM - Werkstofftechnik, Lotharstraße 1, 47057 Duisburg, Germany
Motivation

- Most fundamental studies of cavitation damage formation are carried out on soft materials such as aluminum.

- Cavitation erosion on technical alloys is typically investigated with acoustic cavitation.

- Almost no work with single bubbles on technical alloys.

- It is not clear whether the same damage mechanisms apply to technical as to softer materials.

Experimental set-up: Bubble generation and detection

- Generation of bubbles with laser focus of 1064 nm Nd:YAG Laser
- Bubble dynamics are captured with a high-speed camera
- Ex-situ confocal and white light microscopy analysis
Materials

X2CrNiMo18-15-3 (316L©)
- \(R_{\text{yield}} \geq 190 \, \text{MPa} \)
- \(R_{\text{tensile}} = 490\text{-}690 \, \text{MPa} \)
- hardness = 132 ± 4 HV10

X13CrMnMoN18-14-3 (P2000©)
- \(R_{\text{yield}} \geq 600 \, \text{MPa} \)
- \(R_{\text{tensile}} \geq 900 \, \text{MPa} \)
- hardness = 271 ± 7 HV10
- contains ≈ 0.8 wt.% N

CuAl10Ni5Fe5 ("NAB")
- \(R_{\text{yield}} \geq 280 \, \text{MPa} \)
- \(R_{\text{tensile}} \geq 650 \, \text{MPa} \)
- hardness = 275 ± 11 HV10
Ex-situ analysis of multi-bubble damage

- Maximum depth of the damage region is measured

- Ex-situ damage analysis
 - new sample for each data point

- Fluctuations are not physical
 - in-situ operando imaging of damage evolution

In-situ experiments

- Incident-light microscope to investigate surface damage in situ
- Entire damage process can be observed in one single sample
- Increasing intervals between successive microscope images
L316 Steel – $\gamma = 1.4 \ r = 1.3 \ mm$

Side view

Top View

beam direction
Damage formation at $\gamma = 1.4$

Steel – 5850 bubbles

Aluminum – 100 bubbles

Steel – 5000 bubbles

NiAl-Bronze - $\gamma=1.36$ r=1.25 mm

Side view

beam direction

Top View

jonas.kuehlmann@uni-due.de
uni-due.de/ivg/
L316 Steel $\gamma = 1.3$ $r = 1.25$ mm

beam direction
Conclusions

- In-situ microscopy allows following the damage process step by step

- Even technical alloys show first damage after just a few cavitation bubbles

- For gamma $\gamma \approx 1.3 - 1.4$ this damage occurs in small individual pits, each in the area of the second collapse

- Next: Correlation with more detailed ex-situ analysis, parameter variations