Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids

Matej Kanduč
Jožef Stefan Institute, Ljubljana
What limits the suction intensity of plants?

In collaboration with:

Physics
- Roland R. Netz, FU Berlin
- Emanuel Schneck, TU Darmstadt
- Philip Loche, FU Berlin

Botany
- Jochen Schenk, Cal State Fullerton
- Steven Jansen, Ulm University
Hydraulic systems in plants

1. Roots take up water from the soil.
2. Water is drawn up the stem to the leaves.
3. Water evaporates from the leaves.

Stomata:
- Water vapor
- Water
Hydraulic systems in plants

Plants transport water from the roots under negative pressures

Problem: Water and the surrounding structures are metastable

$p \approx -80 \text{ bar!}$
Free energy of a bubble formation

Cavitation barrier

\[\Delta G_w = 4\pi r^2 \gamma + \frac{4}{3} \pi r^3 p \]

Free energy of the bubble:

Free energy barrier:

\[\Delta G_w^* = \frac{16\pi \gamma_0^3}{3 \frac{p^2}{r^2}} \]

Transition rate theory

- Arrhenius description of the transition rate over the barrier

\[k = k_0 e^{-\beta \Delta G_w^*} \]

where

\[k_0 = \kappa_0 V \]

- Cavitation rate:

\[\frac{df}{dt} = -kf \]

with the solution

\[f(t) = e^{-kt} \]

(survival probability)
Bubble nucleation from MD simulations

Nucleation event:
\(p = -1500 \text{ bar} \)

Cavitation rate density
\[J = V^{-1} \left(-\frac{df}{dt} \right)_{t=0} \]

parameters: \(\kappa_0, \gamma \)

practical example
A liter (1 L) of pure water at \(p = -100 \text{ bar} \) cavitates on average in

\[\tau_{\text{cav}} = \frac{1}{\kappa_0 V} e^{\beta \Delta G_w^*} \sim 10^{2890 \pm 100} \text{ s} \]

*note: the age of the universe is only \(4 \times 10^{17} \text{ s} \)
Cavitation triggers (catalysts)

Heterogeneous cavitation

- **Type III** (pseudo-classical nucleation)

Pre-existing nanobubbles

- Bubble nucleation from gas cavities — a review
 - S.F. Jones, G.M. Evans, K.P. Galvin

- **Pre-existing nanobubbles** with low levels of supersaturation
Elements of vascular water (sap):
- supersaturated with some gases
- contains surface-active molecules
- xylem contains hydrophobic surfaces

Solution?
Lipids cover up hydrophobic patches
Cavitation of a lipid bilayer

MD simulation of a connected bilayer
- size: 15 nm × 15 nm
- p = −200 bar
- 12:0 PC (DLPC)

Kanduč et al., PNAS 117, 10733 (2020)
Lipid bilayer cavitation

Top: consecutive bilayer cross-sections (water not shown) during a cavitation event at -215 bar. The lateral surface area of the simulation box: $18 \text{ nm} \times 20 \text{ nm}$.

Correlation between the cavity volume and the cross section area of the cavity

$$V_{\text{cav}} = \alpha_{\text{lip}} A_{\text{cav}}^{3/2}$$

$$\alpha_{\text{lip}} = 0.11$$

Kanduč et al., PNAS 117, 10733 (2020)
Bilayer cavitation

- Free energy of the bilayer cavity:
 \[\Delta G_{\text{lip}} = w_{\text{lip}} A_{\text{cav}} + pV_{\text{cav}}(A_{\text{cav}}) \]

- Free energy barrier:
 \[\Delta G_{\text{lip}}^* = \frac{4w_{\text{ll}}^3}{27\alpha^2 p^2} \]

- Cavitation rate:
 \[\frac{k}{A} = \kappa_0^\text{lip} \exp(-\beta \Delta G_{\text{lip}}^*) \]

Kanduč et al., PNAS 117, 10733 (2020)
An example:
How long does it take for a bilayer to cavitate?

- constant p
- Assuming square bilayer of $L \times L$:

$$\tau_{cav} = \frac{1}{\kappa_0^\text{lip} A} e^{\beta \Delta G_{\text{lip}}^*}$$

Kanduč et al., PNAS 117, 10733 (2020)
Maximal tensions

Cavitation pressure versus the mean cavitation time for different bilayer areas:

\[p_{\text{cav}} = -\frac{2}{\alpha_{\text{lip}}} \left(\frac{w_{\text{lip}}}{3} \right)^{3/2} \frac{1}{\sqrt{k_{B}T \ln(\kappa_{0}^{\text{lip}} A \tau_{\text{cav}})}} \]

parameters:

\[\alpha_{\text{lip}} = 0.11 \]
\[\kappa_{0}^{\text{lip}} = 65 \pm 4 \text{ ns}^{-1} \text{nm}^{-2} \]
\[w_{\text{lip}} = 7.6 \text{ kJ/mol/nm}^{2} \]

max. tension in dessert plants, \(-70\) bar (Stroock et al.)
cavitation tension in sporangia cells, \(-90\) bar (Noblin et al.)

Kanduč et al., PNAS 117, 10733 (2020)
Water under negative pressures in cells

Catapulting mechanism of fern spores

- building tension through evaporation
- cavitation at $p_{\text{cav}} = -90\ \text{bar}$

Noblin et al., Science 2012
Conclusions

- **Combining simulation and kinetic modeling approaches:**
 All-atom simulations provide necessary molecular parameters
 Analytic continuum model enables the extrapolation to relevant time and length scales

- **bulk water** does not likely cavitate (in homogeneous way) under negative pressures (e.g., −100 bar)

- **bilayers** can cavitate (depends on the exposed negative pressure and detailed interactions)
 The presence of bilayers imposes strict upper limit of negative pressure (−70 to −90 bar) in a system
Acknowledgements

Physics
- Roland R. Netz, Free University Berlin
- Emanuel Schneck, Technical University Darmstadt
- Philip Loche, Free University Berlin

Botany
- Jochen Schenk, California State University, Fullerton
- Steven Jansen, Ulm University