Investigation of Inertial Cavitation of Sonosensitive and Biocompatible Nanoparticles in Flow - Through Tissue-Mimicking Phantoms Employing Focused Ultrasound

Benedikt George¹, U. Savšek², D. Fischer², H. Ermert³, S.J. Rupitsch¹

¹Department of Microsystems Engineering, IMTEK, ALU Freiburg ²Department of Pharmaceutics, FAU Erlangen-Nürnberg ³Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen

Albert-Ludwigs-Universität Freiburg

Gefördert durch

DFG Deutsche Forschungsgemeinschaft ER 94/33-1, LE 626/16-1, RU1656/2-1

Motivation – Efficient chemotherapy

Systemic chemotherapy

- Small amount of cytostatic drug (CD) can be accumulated inside tumour
- Dosage is limited due to side effects
- → Drug-Delivery concepts
- Reduce side effects
- Increase dosage of CD inside the tumorous tissue

Motivation – Drug release

Motivation – Challenge

Focal zone / Focal volume $V_F(f)$

Sound field parameters

- Sound pressure $\hat{p}_{\mathrm{PRFPmax}} =$ 1.85 MPa
- Sound intensity $I_{\text{max}} \approx 1.23 \frac{\text{W}}{\text{m}^2}$
- Focal diameter $Ød_{\rm F-1dB} \approx 1$ mm

2

Experimental – PVA-Phantom

Experimental – Setup

Experimental - Settings

Ultrasound signal

- Burst signal *m*
- *f* = 550 950 kHz
- $\hat{p}_{\mathrm{PRFP}}(MI=1.4;f) pprox$ 1.04 1.36 MPa
- $T_{\rm B} = 0.6 \, {\rm ms}$
- $T_{\rm P} = 2 \, {\rm s}$
- *m* = 1, ..., *M*
- M = 50

Additional parameters

- Water temperature $T = 30 \degree C$
- Flow velocity $v_{\rm f}(\emptyset d_{\rm C} = 1 \text{ mm}) = 50 \text{ mm/s}$

N N

B

Results – Nanocapsules – Inertial cavitation

f ∖ MI	0.3	0.5	0.7	0.9	1	1.1	1.3	1.5	1.7	1.9
550 kHz										
650 kHz										
750 kHz										
850 kHz										
950 kHz										

IC vanishes with an increasing frequency as well as an

increasing *MI* (pressure)

9

Results – Nanocapsules – Inertial cavitation

$f \setminus MI$	0.3	0.5	0.7	0.9	1	1.1	1.3	1.5	1.7	1.9
550 kHz										
650 kHz										
750 kHz										
850 kHz										
950 kHz										

IC vanishes with an increasing frequency as well as an

increasing *MI* (pressure)

Conclusion

- Investigation of IC of the nanocapsules under realistic conditions
- By calculating the voltage spectral density, the focal volume should be considered
- Calculation of the energy of the noise signal gives a hint, if cavitation is either stable or inertial

Outlook

- PVA-Phantom employing a more complex vascularisation
- Coupling unit to investigate clinical application

UNI FREIBURG

Thank you for your attention

Email: benedikt.george@imtek.uni-freiburg.de

Gefördert durch

