Investigation of Inertial Cavitation of Sonosensitive and Biocompatible Nanoparticles in Flow - Through Tissue-Mimicking Phantoms Employing Focused Ultrasound

Benedikt George1, U. Savšek2, D. Fischer2, H. Ermert3, S.J. Rupitsch1

1Department of Microsystems Engineering, IMTEK, ALU Freiburg
2Department of Pharmaceutics, FAU Erlangen-Nürnberg
3Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen
Motivation – Efficient chemotherapy

Systemic chemotherapy

- Small amount of cytostatic drug (CD) can be accumulated inside tumour
- Dosage is limited due to side effects

→ Drug-Delivery concepts
- Reduce side effects
- Increase dosage of CD inside the tumorous tissue

I. Development of sonosensitive and biocompatible nanoparticles
 - Carrier of the CD
 - Initiation of drug release via focused ultrasound → Inertial Cavitation

II. Investigation of suited ultrasound signals
 - Consideration of diagnostic limit value (Mechanical Index MI)
 \[
 MI = \frac{\hat{p}_{\text{neg}}}{\text{MPa}} \leq 1.9 \sqrt{\frac{f}{\text{MHz}}}
 \]
 - Setup for measurements
Motivation – Drug release

Sphere: Polymer + CD
~110 nm
Capsule: Polymer + Oil + CD
~200 – 250 nm

Drug release - Cavitation

1. p
2. Longitudinal wave – Bubble dynamics
 \[|p_{\text{neg}}| < p_{\text{Tr}}\]
3. Bubble collapse - Implosion
 Fluid jet close to surface of nanocarrier
 Drug release and destruction of nanocarrier

FUS transducer
nano-capsules
tumour
blood vessel (diameter \(\phi d_C\))
Motivation – Challenge

Blood vessels
\(\phi d_C = 0.6 \text{ mm} - 2.4 \text{ mm} \)

Focal zone / Focal volume \(V_F(f) \)

Sound field parameters

- Sound pressure \(\hat{p}_{PRFP \text{max}} = 1.85 \text{ MPa} \)
- Sound intensity \(I_{\text{max}} \approx 1.23 \frac{W}{m^2} \)
- Focal diameter \(\phi d_F - 1 \text{dB} \approx 1 \text{ mm} \)
Experimental – PVA-Phantom

3D-View

Section A-A

Dimensions

- $h_p = 100\,\text{mm}$
- $h_{ps} = 50\,\text{mm}$
- $w_p = 61 - 63\,\text{mm}$
- $\phi d_c = 1 - 3\,\text{mm}$

Sound impedance

- $Z_{\text{PVA}} \approx 1.60 - 1.65 \cdot 10^6 \text{kgm}^{-2}\text{s}^{-1}$
- $Z_{\text{blood}} \approx 1.68 \cdot 10^6 \text{kgm}^{-2}\text{s}^{-1}$
- $Z_{\text{muscle}} \approx 1.65 \cdot 10^6 \text{kgm}^{-2}\text{s}^{-1}$
Experimental – Setup

Computer

Transmitter unit

Receiver unit

Water basin

PVA - Phantom

Temperature controller unit

Beaker Magnet stirrer

Multifunction- I/O device

Collector

Peristaltic pump
Experimental - Settings

Ultrasound signal
- Burst signal \(m \)
- \(f = 550 - 950 \) kHz
- \(\hat{p}_{PRFP} (MI = 1.4; f) \approx 1.04 - 1.36 \) MPa
- \(T_B = 0.6 \) ms
- \(T_P = 2 \) s
- \(m = 1, \ldots, M \)
- \(M = 50 \)

Additional parameters
- Water temperature \(T = 30 \) °C
- Flow velocity \(v_f(\varnothing d_C = 1 \text{ mm}) = 50 \text{ mm/s} \)

Sine burst
- \(u_s(t) \)

Cavitation → Noise

Broadband signal \(u_{Bm}(t) \)
- \(U_m(i) \)

\[
S_{rm} = \sqrt{\sum_{i=i_S}^{i_E} U_m(i)^2 / B}
\]

\[
S_{RM} = \frac{1}{M} \sum_{m=1}^{M} S_{rm}
\]
Results – Nanocapsules; $\phi d_C = 1$ mm; $MI = 1.4$
Results – Nanocapsules – Inertial cavitation

Inertial cavitation is a necessary effect for drug release

Indicator: Implosion of bubbles during positive pressure phase (PPP) → Noise energy in PPP > Noise energy in NPP

1. Determine t_{IC}
2. Model and shift signal $u_M(t)$
3. Calculate energy E_{pos} & E_{neg} of $u_{Bm}(t)$ in pressure phases

\[E_{PPP, NPP}(MI) = \sum_{m=1}^{M} \int_{t_{IC}}^{t_{IC}+T_B} |u_{Bm}(t)|^2 dt \]
Results – Nanocapsules – Inertial cavitation

IC vanishes with an increasing frequency as well as an increasing MI (pressure)

<table>
<thead>
<tr>
<th>f \ MI</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
<th>1.3</th>
<th>1.5</th>
<th>1.7</th>
<th>1.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>550 kHz</td>
<td></td>
</tr>
<tr>
<td>650 kHz</td>
<td></td>
</tr>
<tr>
<td>750 kHz</td>
<td></td>
</tr>
<tr>
<td>850 kHz</td>
<td></td>
</tr>
<tr>
<td>950 kHz</td>
<td></td>
</tr>
</tbody>
</table>

$E_{PPP} > E_{NPP}$
Results – Nanocapsules – Inertial cavitation

<table>
<thead>
<tr>
<th>f (kHz)</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
<th>1.3</th>
<th>1.5</th>
<th>1.7</th>
<th>1.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td></td>
</tr>
</tbody>
</table>

IC vanishes with an increasing frequency as well as an increasing MI (pressure)

$E_{PPP} > E_{NPP}$
Conclusion

- Investigation of IC of the nanocapsules under realistic conditions
- By calculating the voltage spectral density, the focal volume should be considered
- Calculation of the energy of the noise signal gives a hint, if cavitation is either stable or inertial
Outlook

- PVA-Phantom employing a more complex vascularisation
- Coupling unit to investigate clinical application
Thank you for your attention

Email: benedikt.george@imtek.uni-freiburg.de